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Readings

Required:
» Glymour 2015: chapter 8, pp. 185 — 209:
» Sections: The Theory of Probability, Bernoulli Trials; The
Binominal Distribution; Bayes, Price, and Hume; The
Modern Revival; Bounded Rationality and Bayesian
Problems.
Optional:
» Lin, Hanti, "Bayesian Epistemology”, The Stanford
Encyclopedia of Philosophy, https://plato.stanford.edu/
archives/sum2024/entries/epistemology-bayesian/
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Probability Theory

Intro

Skepticism claims that there is no reliable procedure to obtain
knowledge about the world.

In this and the next lecture, we look at solutions: spelling out
the idea that we don't need reliability in all worlds, but only in
those we care about.

In this lecture, we see how probability theory and Bayesianism
can provide such a solution to (Hume's) inductive skepticism.
Reliability is expressed by a probability distribution, so this
method will consist of deriving a reliable probability
distribution based on observations.
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Probability Theory Induction and Probability Bayesian Solutions

Probability Theory

» Probability theory is the mathematical theory of assigning
probabilities to events and reasoning with them.

» A probability measure assigns probabilities (i.e., real numbers
0<p<1) to events.
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Probability Theory Induction and Probability Bayesian Solutions

Probability Theory: Example

» We have an urn with marbles of the same weight and size.

» There are b-many black marbles, and w-many white marbles
(and there are no other marbles).

» An ‘experiment’ is: shuffle, take a marble (blindly), record it,
replace it, shuffle again.

» The possible outcomes (or samples) of an experiment are
drawing a white marble (W) and drawing a black marble (B).

» Since there are no other outcomes, the outcome space is
X ={W,B}.



Probability Theory Induction and Probability Bayesian Solutions

Probability Theory: Events

» An event is the occurrence of an outcome: we write {B} for
the event that the outcome B occurs.

» The probability of this event in our experiment is

p({B}) = m And similarly: p({W}) = T
» Logical combinations of events are also events:

» The event of drawing either a black or a white marble is
their union {B}U{W}={B,W} (= X).
» For ‘and’ it is the intersection: {B}N{W} (=0).
» The event of not drawing a black marble is the
complement X\ {B} = {W}.
» The set of events is thus the set of all subsets of the outcome
space X: written as Z?(X) (the powerset of X).
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Probability Theory Induction and Probability Bayesian Solutions

Probability Theory: Probability Space

» The trivial event that an outcome occurs is X and has a
probability of 1 (is certain).
» If two events A and B are incompatible (AN B = 0), then
p(AUB) = p(A)+ p(B).
» More generally:
Definition
A probability measure over a finite set X is a function
p: Z(X)—[0,1] such that
» p(X)=1, and
» p(AUB)=p(A)+p(B) if ANB=0.
We call (X, 22(X),p) a probability space.



Probability Theory Induction and Probability Bayesian Solutions

Probability Theory

|
| 2

For the mathematicians:

The general definition of a probability space (X,.#,p) with a
potentially infinite outcome space X (e.g., X =R) is more
complex:
» One may allow only certain subsets of Z(X) (called
o-algebras) as the set of events .#, and
» p must be countably additive (instead of merely finitely
additive).
If we need this more general case, we will address it only
‘intuitively’ i.e., not formally.
Terminology: In the finite case, one may also speak of a
probability distribution rather than a probability measure. If
x € X, we write p(x) for p({x}).
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Probability Theory Induction and Probability Bayesian Solutions

Outline

2. Induction and Probability
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Induction and Probability

The Problem of Induction, Probabilistically |

The connection to induction is the following analogy:

empirical law —  probability measure (the urn of nature)
instance/observation —  event (drawing from the urn of nature)

» For example: An ‘experiment’ could be observing, on a given
day, whether the sun rises (outcome 1) or not (outcome 0).

» The observation/instance that the sun rises corresponds to
the event {1}; that it does not rise corresponds to {0}.

» The empirical law that the sun always rises then corresponds
to the probability measure p such that the experiment is
designed so p({1}) =1 (the sun rising is certain).
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Probability Theory Induction and Probability Bayesian Solutions

The Problem of Induction, Probabilistically Il

» Determining whether the empirical law holds (through
empirical research) corresponds to determining the probability
measure of the urn of nature (i.e., the true probability).

» In other words, according to this analogy, empirical research is
akin to determining the true probability measure of an urn
(the ratio of white to black marbles) by conducting repeated
experiments.

» Repeated experiments with an urn are known as Bernoulli
trials.
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Probability Theory Induction and Probability Bayesian Solutions

The Problem of Induction, Probabilistically Il

Thus, we can extend the analogy to what we can call the Bernoulli
model of empirical research:

empirical law —  probability measure (the urn of nature)
instance/observation —  event (drawing from the urn of nature)
empirical research —  repeated drawing (Bernoulli trials)

Two questions arise:
» How do we formally describe Bernoulli trials?

» Can this model be used to approximate the true probability
distribution/measure?
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Induction and Probability

Bernoulli Trials |

» Assume that outcome 1 (black marble, sunrise, etc.) has
probability p; and outcome 0 (white marble, no sunrise, etc.)
has probability g=1—p.

» We call outcome 1 a success and outcome 0 a failure.

» If we conduct the experiment twice, there are four possible
outcomes: 11,10,01,00. The probabilities are:

p({11}) =pp p({10})=pqg p({01})=gp p({00})= qq.

» For example, the probability of the event that there is
(exactly) one success is p({10,01}), and that is

p({10}) + p({01}) = pg+gp = 2pq.
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Probability Theory Induction and Probability Bayesian Solutions

Bernoulli Trials Il

» In general: If we conduct n experiments, the outcomes are
binary strings of length n,

» and the probability of k successes in the entire trial is

M\« n—k
(k)p q
n!

where (7) = K(n—R)! is the binomial coefficient (n!=1-...-n
with 0! = 1).

> (Z) describes how many ways there are to choose k objects
out of n different objects.

» In the previous example (1 success in 2 trials: n=2, k =1),
2
(1) =2
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Probability Theory Induction and Probability Bayesian Solutions

Bernoulli Trials Il

» We described precisely what Bernoulli trials are.
» Can they approximate the true probability p?

» Yes! That is what the Bernoulli theorem is about, also known
as

Theorem (The Weak Law of Large Numbers)

For any p (the true probability of the urn), for any real number
€ >0 (a small margin of error), the probability that the observed
proportion of successes in n trials differs from the true proportion
of successes p by more than € converges to 0 as the number of
trials n increases.
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Probability Theory Induction and Probability Bayesian Solutions
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» Initial Variability: At the beginning (few flips), the
proportion of heads fluctuates greatly because the sample size
is small, and random variation dominates.
» Convergence Over Trials: As the number of flips increases,
the proportion of heads stabilizes and gets closer to the
theoretical value (0.5). 18/41



Probability Theory Induction and Probability Bayesian Solutions

Bernoulli Trials IV

» Bernoulli's response to inductive skepticism argues that while
empirical research cannot provide absolute certainty, it can
offer increasing confidence in probabilistic conclusions.

» Since empirical research involves a finite number of
observations, we cannot determine the exact true probability
of an event. However, repeated trials allow us to approximate
it with increasing accuracy.

» As the number of trials grows, the observed proportion of
successes becomes closer to the true probability, making our
empirical estimates more reliable.

» Instead of achieving absolute knowledge, we attain
progressively justified belief, which is practically sufficient for
scientific inquiry and decision-making.
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Probability Theory Induction and Probability Bayesian Solutions

Problems with the Bernoulli Model

» The Bernoulli theorem establishes that, as the number of
trials increases, the observed probability is the true probability
within an arbitrarily small margin of error.

» However, this result is primarily qualitative: it guarantees that
certainty approaches 1 but does not specify how this happens
for a given number of trials.

» Bernoulli himself recognized this limitation-he lacked a precise
method to quantify the accuracy of an observed proportion
relative to the number of trials.

» This limitation is significant for addressing inductive
skepticism. We not only need assurance that our confidence
increases over time but also a way to measure how much
certainty we have at any given stage.
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Probability Theory Induction and Probability Bayesian Solutions

Outline

3. Bayesian Solutions
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Probability Theory Induction and Probability Bayesian Solutions

The Bayesian Turn

» The problem of induction, in probabilistic terms, is as follows:

» Given observations, we estimate the true probability
distribution p.
» We seek to quantify how confident we can be that our
estimate is correct.
» Bayes' key insight was to approach this using probabilities of
probabilities, assigning a probability distribution to p itself.



Probability Theory Induction and Probability Bayesian Solutions

The Bayesian Turn

» To formalize this, we distinguish between:
P At the base level, p describes the probability in an
experiment (e.g., drawing from an urn).
P At the higher level, a probability distribution represents
our uncertainty about the correct value of p.
» Without prior observations, we assume all values of p are
equally likely (a uniform prior).
» As we collect more data, we refine our estimate of p, and we
get a better idea of the correct value of p.
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Probability Theory Induction and Probability Bayesian Solutions

The Bayesian Turn

» (Don't worry, the mathematical details aren’t very important.
In the exams, you do not need to calculate any integral. But
focus on what they intuitively mean and imply)

» Mathematically, we seek the probability that p lies within an
interval [a, b] given k successes in n trials:

P(a < p<b|k successes in n trials).

» Conditional probability P(A|B) is defined as P(ANB)/P(B),
so we need to determine P(ANB) and P(B).
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Bayesian Solutions

The Bayesian Turn

» What is P(B) = P(k successes in n trials)?

» |dea: Calculate the probability of k successes in n trials given
the probability of success p, and then average over all possible
values of p.

» Some mathematical details:

» Since p takes real values (p € [0,1]), we cannot compute
the average using a sum but need an integral.

» Since we haven't observed anything yet, all values of p
are equally likely. Thus:

P(B) = /01 (Z) p (1—p)" % dp.
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Bayesian Solutions

The Bayesian Turn

» What is P(a < p < b and k successes in n trials), i.e.,
P(ANB)?

» The same idea, except now p is in [a, b] instead of [0,1].
Thus:

P(ANB) = /ab (Z) pH(1—p)"* dp.

» We now have an expression for the desired P(A|B). However,
solving these integrals is difficult. Bayes solved the first:
P(B)=1/(n+1).

» As an example of the second, consider our observation of the
sunrise: i.e., where every observation is a success.
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Probability Theory Induction and Probability Bayesian Solutions

The Bayesian Turn

» Then n=k, so (Z)zland n—k=0, so:

P(AQB)Z/:) (:)Pk(l—P)”" dp=/abp”dp

:[ 1 n+1}b: 1 (b — amth)
n+1 a n+1

» Since P(B)=1/(n+1), and P(A|B) is P(ANB)/P(B), we
have:

P(a< p < b| nsuccesses in n trials) = b —a"*1,
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Probability Theory Induction and Probability Bayesian Solutions

The Bayesian Turn

» Thus, after observing n =10 sunrises, our confidence that the
true probability (nature’s urn) lies between 0.8 and 1 is
11— 0.8 ~0.91.

» After observing n =500 sunrises, our confidence that the true
probability lies between 0.99 and 1 is =~ 0.993.

» This is the Bayesian answer to the problem of induction:

» Not only do the observed probabilities converge to the
true probability (as Bernoulli already showed).

» We can also quantify how confident we are in our
estimate given the number of observations.
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Probability Theory

Induction and Probability Bayesian Solutions

Modern Bayesianism

(1) A New Interpretation of Probability

>

The traditional interpretation, frequentism, defines
probability as relative frequency-the limit of an event's
occurrences over many trials.

Bayesianism, in contrast, defines probability as rational
degrees of belief-the confidence a rational agent assigns
to an event.

Degrees of belief take values in [0,1] and must follow
probability axioms.

Rationality requires updating beliefs when encountering
new evidence via conditional probability.

Frequentism is objective (probability depends on observed
frequencies).

Bayesianism is subjective (probability applies even to
unobserved events).
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Bayesian Solutions

Modern Bayesianism

(2) Beyond Bernoulli Trials: A More General Bayesian
Framework

» Bayesianism is not limited to simple yes/no (Bernoulli)
trials.

» A prior probability distribution represents initial
uncertainty about parameters.

» As data (evidence) is observed, a posterior distribution by
conditionalizing on the data (or evidence) that we've
observed.

» Under broad conditions, Bayesian updating converges to
the true probability distribution.

» (Later, we will discuss cases where convergence may fail.)
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Bayesian Solutions

Modern Bayesianism

(3) A More General Model of Science

» The Bernoulli model assumes empirical research involves
binary outcomes (yes/no).

» In reality, probabilities may change over time, meaning
trials are not always independent.

» Bayesian methods also work with general probability
distributions.

» Additionally, Bayesian inference is not limited to simple
yes/no questions-we can allow any possible hypotheses
formulated in an appropriate formal language.
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Bayesian Solutions

Problems for Bayesianism

1. Convergence Issues: When Bayesian Updating Fails
(1) Problem of Zero Prior Probability

» If a Bayesian agent assigns prior probability 0 to the true
value of p, no amount of evidence will update their belief
toward it.

» Example: If we assume a prior that excludes p =1 for the
probability of sunrise, we will never converge to this
truth, no matter how many sunrises we observe.

» This highlights the risk of overly restrictive or dogmatic
priors.
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Bayesian Solutions

Problems for Bayesianism

(2) Underdetermination by Data

» If two competing hypotheses predict identical
probabilities for observed data, Bayesian updating does
not favor one over the other.

» This leaves Bayesianism unable to refute metaphysical
skepticism (e.g., brain-in-a-vat scenarios).

» Since all observations are equally likely under both
hypotheses, Bayesianism permits strong belief even in
brain-in-a-vat scenarios.
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Bayesian Solutions

Problems for Bayesianism

2. Unrealistic Rationality Assumptions
(1) Assumption of Perfect Data Reliability

P Bayesian reasoning assumes that all observations are true.

» Problem: Perceptual errors exist (e.g., mistaking a color
under different lighting conditions).

» A possible solution is to model sensory data separately,
treating interpretation as another Bayesian process.

(2) Unbounded Computational Requirements

» Bayesian agents must track all hypotheses, compute
probability updates, and reason without logical errors.

» This is computationally infeasible, especially as
hypotheses become complex.

» Worse: Some Bayesian updates require solving
non-computable problems, meaning even theoretical
computers cannot perform them.
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Bayesian Solutions

Problems for Bayesianism

Possible responses:

» It's not a problem per se to (first) focus on the ‘idealized’ case
of rational agents (before looking at actual agents).

» One can understand Bayesianism as a normative theory: how
agents should reason as opposed to how they actually do.
(Many take logic to be normative in this sense: describing
correct reasoning rather than the psychology of reasoning.)
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Probability Theory Induction and Probability Bayesian Solutions

Problems for Bayesianism

3. The Problem of Inductive Assumptions

» Bayesian inference assumes the uniformity of nature-that the
future resembles the past.

» What if the true probability changes unpredictably every day?
In such a world, no learning occurs, even with infinite data.

» Bayesian inference requires that all observations come from a
stable probability distribution.
» This is typically ensured by assuming independent and
identically distributed (i.i.d.) samples.
» While independence can sometimes be relaxed (e.g.,
Markov models), identical distribution remains essential.

36
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Bayesian Solutions

Problems for Bayesianism

Possible Responses: Defending Bayesianism

» One defense is that assuming stability is optimal:
» If the world is stable, Bayesian inference works best.
» If the world is unstable, no method works better, making

Bayesianism no worse than alternatives.
» Reichenbach argued that induction is not just useful but
dominant:

P In some worlds, it is superior to all other methods.

» In no logically possible world is it worse than any other
method.
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Probability Theory Induction and Probability Bayesian Solutions

Summary and Current State

» The Bayesian approach provides a structured solution to the
problem of induction:

» While we can never achieve absolute certainty about an
empirical law, we can rigorously quantify how our confidence
increases with accumulating evidence.

» Through Bayesian updating, the probability assigned to a
correct hypothesis grows as more observations are collected.

» Under broad conditions, this learning process converges to the
truth, making Bayesian inference a powerful tool for scientific
reasoning.
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Probability Theory Induction and Probability Bayesian Solutions

Summary and Current State

» This offers a nuanced solution to the problem of induction:

» Instead of absolute certainty, we work with degrees of
belief that continuously improve with evidence.

» Traditional notions of knowledge, justification, and
reliability are reframed in terms of probabilistic
confidence.

» Bayesian induction is not universally reliable in all
logically possible worlds but is effective in the worlds that
matter to us.

» In the next lecture, we will explore non-probabilistic
approaches to induction and their philosophical implications.
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Bayesian Solutions

Exercises

1. Do think the Bernoulli model of empirical inquiry is a
plausible description of doing science? (E.g., what if the
relevant part of nature is more complicated than just a binary
yes/no question, i.e., an urn with two outcomes?) Are your
objections solved by the more general Bayesian model? Do
you have objections to it as well?

2. Discuss the Bernoulli reply to inductive skepticism: is
increasingly justified belief really almost as good as
knowledge?

3. Do some calculations in the slides ‘The Bayesian twist" above:
e.g., more examples of a and b as on slide to see how fast the
convergence is.
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Bayesian Solutions

Exercises

4. Compare the frequentist and Bayesian interpretation of
probability. Do you think one is a better analysis of our
concept of probability or do you think they are incomparable
and capture two different meanings of ‘probability’?

5. Consider the Bayesian formalization of the concept of
rationality. What do you think does it get right, what does it
miss?

6. Discuss the non-computability objection to Bayesianism: e.g.,
how bad is theoretical non-computability for a philosophical
theory if in most practical applications it can be avoided? Can
you find further responses?
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